
IFT870/BIN710
Forage de données

Thème 2 : Exploration de données

Aida Ouangraoua
Département d'informatique

Partie I : Théorie

Type de données

q Données sous forme d’enregistrement
v Vecteurs de valeurs d’attributs (ex : matrices numériques)
v Données de documents (ex: matrices documents-termes)
v Données de transactions (ex. ensembles d’items)

q Données structurées sous forme de séquences ou graphes
v Ordonnées : vidéo (séquence d’images), données

séquentielles (séquences de données, ex: séquences
biologiques), données temporelles (série de données
ordonnées dans le temps)

v Graphes : réseaux sociaux, données du web

q Données spatiales et de multimédia
v Données spatiales (cartes)
v Images

Type de données

q Vecteurs de valeurs d’attributs (ex : matrices numériques)
q Données de documents (ex: matrices documents-termes)

q Données de transactions (ex. ensembles d’items)
TID Items
1 Bread, Coke, Milk
2 Beer, Bread
3 Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
5 Coke, Diaper, Milk

Ensemble de données

q Ensemble d’objets (ou entités, enregistrements, vecteurs, points)
q Objets représentés par des valeurs d’attributs
q Ensemble d’objets représentés sous forme de matrice M

v Lignes : objets
v Colonnes : attributs (ou dimensions, variables,

caractéristiques, propriétés «features»)
v M(i,j) : valeur de l’attribut j pour l’objet i.

Type d’attributs

q Nominal ou catégoriel (discret)
v Valeurs représentant des classes ou catégories
 Exemple : continent = {NA, SA, AF, AS, OC, EU}

q Binaire (discret) : Nominal à 2 valeurs (symétrique ou
asymétrique)

q Ordinal (discret)
v Valeurs ordonnées
 Exemple : Cote : A+, A, A-, B+, B, B-, …

q Numérique:
v Discret : valeurs entières
v Continu : valeurs réelles

Descriptions statistiques

q Permet de mieux connaître les données pour identifier des
questions, et des modèles potentiellement adéquats

q Synthèse des valeurs d’un attribut
q Minimum, maximum, moyenne, médiane, mode, estimation de

la probabilité des valeurs (distribution de probabilités)

q Synthèse de la dispersion des valeurs
v Variance, écart-type, quartile, écart inter-quartile, valeurs

aberrantes, nombre d’objets par intervalle de valeurs
(histogramme), distribution des probabilités

Descriptions statistiques : Synthèse des valeurs

q Minimum, Maximum, Moyenne

q Médiane: valeur m telle qu’il y a autant de valeurs supérieures à m
que de valeurs inférieures à m.

 Exemple : Médiane([1,2,10,12,13]) = 10 ; Médiane([2,10,12,13]) = 11

q Mode : valeur la plus fréquente

x =
1

n
xi

i=1

n

∑

Descriptions statistiques : Synthèse des valeurs

q Mode : valeur la plus fréquente
v Peut-être unimodal, bimodal, trimodal

Distributions
de probabilités

Descriptions statistiques : Synthèse de la dispersion

σ 2 =
1

n−1
(xi − x)2

i=1

n

∑ σ

Distribution de probabilités (normale)

q Variance: Écart-type:

q Quartiles :
q 1er quartile Q1 : médiane des valeurs
 inférieures à la médiane
q 2e quartile Q2 : médiane
q 3e quartile Q3 : médiane des valeurs
 supérieures à la médiane
q Écart inter-quartile (IQR) = Q3 – Q1
q Valeurs aberrantes : < Q1 – 1.5*IQR
 ou > Q3 + 1.5*IQR Boxplot

Descriptions statistiques : Synthèse de la dispersion

Distribution de probabilités (normale) Boxplot

Visualisation des descriptions statistiques : utilité

q Pré-traitement

v Aide à l’exploration des données

v Donne un aperçu et une vue d'ensemble qualitative de l’espace
des données

v Permet d’identifier des tendances, structures, irrégularités,
relations ou modèles entre les données

v Guide pour trouver des régions intéressantes et des paramètres
appropriés pour une analyse quantitative approfondie

q Post-traitement

v Fournit une preuve visuelle des modèles dérivées

Visualisation des descriptions statistiques : types de
graphique

q Relation entre deux variables (possibilité de distinguer suivant d’autres
variables)

q Régression entre deux variables (possibilité de distinguer suivant d’autres
variables)

q Relation entre deux variables dont une catégorielle (possibilité de
distinguer suivant d’autres variables)

q Distribution univariée et bivariée

q Matrice de couleurs pour des données rectangulaires

q Grille multi-graphique
q Groupement suivant deux variables (lignes, colonnes)
q Grille de relations deux-à-deux entre toutes les variables
q Relation ou distribution bivariée couplée aux 2 distributions univariées

q Visualisation en 3D

Visualisation : Relation entre deux variables
q Points 2D (scatter plot) : tendance globaletips = sns.load_dataset("tips")

sns.relplot(x="total_bill", y="tip", data=tips);

While the points are plotted in two dimensions, another dimension can be added to the plot by coloring the points

according to a third variable. In seaborn, this is referred to as using a “hue semantic”, because the color of the point

gains meaning:

sns.relplot(x="total_bill", y="tip", hue="smoker", data=tips);

To emphasize the difference between the classes, and to improve accessibility, you can use a different marker style

for each class:

Visualizing statistical relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/relational.html

2 of 18 2020-01-28, 09:15

tips = sns.load_dataset("tips")

sns.relplot(x="total_bill", y="tip", data=tips);

While the points are plotted in two dimensions, another dimension can be added to the plot by coloring the points

according to a third variable. In seaborn, this is referred to as using a “hue semantic”, because the color of the point

gains meaning:

sns.relplot(x="total_bill", y="tip", hue="smoker", data=tips);

To emphasize the difference between the classes, and to improve accessibility, you can use a different marker style

for each class:

Visualizing statistical relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/relational.html

2 of 18 2020-01-28, 09:15

sns.relplot(x="total_bill", y="tip", hue="smoker", style="smoker",

data=tips);

It’s also possible to represent four variables by changing the hue and style of each point independently. But this

should be done carefully, because the eye is much less sensitive to shape than to color:

sns.relplot(x="total_bill", y="tip", hue="smoker", style="time", data=tips);

In the examples above, the hue semantic was categorical, so the default qualitative palette

(color_palettes.html#palette-tutorial) was applied. If the hue semantic is numeric (specifically, if it can be cast to

float), the default coloring switches to a sequential palette:

Visualizing statistical relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/relational.html

3 of 18 2020-01-28, 09:15

Unlike with matplotlib.pyplot.scatter() (https://matplotlib.org/api/_as_gen

/matplotlib.pyplot.scatter.html#matplotlib.pyplot.scatter), the literal value of the variable is not used to pick the area

of the point. Instead, the range of values in data units is normalized into a range in area units. This range can be

customized:

sns.relplot(x="total_bill", y="tip", size="size", sizes=(15, 200), data=tips);

More examples for customizing how the different semantics are used to show statistical relationships are shown in

the scatterplot() (../generated/seaborn.scatterplot.html#seaborn.scatterplot) API examples.

Emphasizing continuity with line plots

Visualizing statistical relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/relational.html

5 of 18 2020-01-28, 09:15

Visualisation : Relation entre deux variables
q Points 2D (scatter plot) : tendance globale

tips = sns.load_dataset("tips")

sns.relplot(x="total_bill", y="tip", data=tips);

While the points are plotted in two dimensions, another dimension can be added to the plot by coloring the points

according to a third variable. In seaborn, this is referred to as using a “hue semantic”, because the color of the point

gains meaning:

sns.relplot(x="total_bill", y="tip", hue="smoker", data=tips);

To emphasize the difference between the classes, and to improve accessibility, you can use a different marker style

for each class:

Visualizing statistical relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/relational.html

2 of 18 2020-01-28, 09:15

3e variable : couleur (hue)

tips = sns.load_dataset("tips")

sns.relplot(x="total_bill", y="tip", data=tips);

While the points are plotted in two dimensions, another dimension can be added to the plot by coloring the points

according to a third variable. In seaborn, this is referred to as using a “hue semantic”, because the color of the point

gains meaning:

sns.relplot(x="total_bill", y="tip", hue="smoker", data=tips);

To emphasize the difference between the classes, and to improve accessibility, you can use a different marker style

for each class:

Visualizing statistical relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/relational.html

2 of 18 2020-01-28, 09:15

Visualisation : Relation entre deux variables
q Points 2D (scatter plot) : tendance globale

Unlike with matplotlib.pyplot.scatter() (https://matplotlib.org/api/_as_gen

/matplotlib.pyplot.scatter.html#matplotlib.pyplot.scatter), the literal value of the variable is not used to pick the area

of the point. Instead, the range of values in data units is normalized into a range in area units. This range can be

customized:

sns.relplot(x="total_bill", y="tip", size="size", sizes=(15, 200), data=tips);

More examples for customizing how the different semantics are used to show statistical relationships are shown in

the scatterplot() (../generated/seaborn.scatterplot.html#seaborn.scatterplot) API examples.

Emphasizing continuity with line plots

Visualizing statistical relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/relational.html

5 of 18 2020-01-28, 09:15

3e variable : couleur (hue)
4e variable : style (style)

sns.relplot(x="total_bill", y="tip", hue="smoker", style="smoker",

data=tips);

It’s also possible to represent four variables by changing the hue and style of each point independently. But this

should be done carefully, because the eye is much less sensitive to shape than to color:

sns.relplot(x="total_bill", y="tip", hue="smoker", style="time", data=tips);

In the examples above, the hue semantic was categorical, so the default qualitative palette

(color_palettes.html#palette-tutorial) was applied. If the hue semantic is numeric (specifically, if it can be cast to

float), the default coloring switches to a sequential palette:

Visualizing statistical relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/relational.html

3 of 18 2020-01-28, 09:15

3e variable : taille (size)

Visualisation : Relation entre deux variables
q Courbe de fonction (line plot) : tendance locale

sns.relplot(x="timepoint", y="signal", ci=None, kind="line", data=fmri);

Another good option, especially with larger data, is to represent the spread of the distribution at each timepoint by

plotting the standard deviation instead of a confidence interval:

sns.relplot(x="timepoint", y="signal", kind="line", ci="sd", data=fmri);

To turn off aggregation altogether, set the estimator parameter to None This might produce a strange effect when

the data have multiple observations at each point.

sns.relplot(x="timepoint", y="signal", estimator=None, kind="line", data=fmri);

Visualizing statistical relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/relational.html

8 of 18 2020-01-28, 09:15

Aggregation and representing uncertainty
More complex datasets will have multiple measurements for the same value of the x variable. The default behavior

in seaborn is to aggregate the multiple measurements at each x value by plotting the mean and the 95%

confidence interval around the mean:

fmri = sns.load_dataset("fmri")

sns.relplot(x="timepoint", y="signal", kind="line", data=fmri);

The confidence intervals are computed using bootstrapping, which can be time-intensive for larger datasets. It’s

therefore possible to disable them:

Visualizing statistical relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/relational.html

7 of 18 2020-01-28, 09:15

Plotting subsets of data with semantic mappings
The lineplot() (../generated/seaborn.lineplot.html#seaborn.lineplot) function has the same flexibility as

scatterplot() (../generated/seaborn.scatterplot.html#seaborn.scatterplot): it can show up to three additional

variables by modifying the hue, size, and style of the plot elements. It does so using the same API as

scatterplot() (../generated/seaborn.scatterplot.html#seaborn.scatterplot), meaning that we don’t need to stop

and think about the parameters that control the look of lines vs. points in matplotlib.

Using semantics in lineplot() (../generated/seaborn.lineplot.html#seaborn.lineplot) will also determine how the

data get aggregated. For example, adding a hue semantic with two levels splits the plot into two lines and error

bands, coloring each to indicate which subset of the data they correspond to.

sns.relplot(x="timepoint", y="signal", hue="event", kind="line", data=fmri);

Visualizing statistical relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/relational.html

9 of 18 2020-01-28, 09:15

Adding a style semantic to a line plot changes the pattern of dashes in the line by default:

sns.relplot(x="timepoint", y="signal", hue="region", style="event",

kind="line", data=fmri);

But you can identify subsets by the markers used at each observation, either together with the dashes or instead of

them:

sns.relplot(x="timepoint", y="signal", hue="region", style="event",

dashes=False, markers=True, kind="line", data=fmri);

Visualizing statistical relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/relational.html

10 of 18 2020-01-28, 09:15

As with scatter plots, be cautious about making line plots using multiple semantics. While sometimes informative,

they can also be difficult to parse and interpret. But even when you are only examining changes across one

additional variable, it can be useful to alter both the color and style of the lines. This can make the plot more

accessible when printed to black-and-white or viewed by someone with color blindness:

sns.relplot(x="timepoint", y="signal", hue="event", style="event",

kind="line", data=fmri);

When you are working with repeated measures data (that is, you have units that were sampled multiple times), you

can also plot each sampling unit separately without distinguishing them through semantics. This avoids cluttering

the legend:

Visualizing statistical relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/relational.html

11 of 18 2020-01-28, 09:15

You can also show the influence two variables this way: one by faceting on the columns and one by faceting on the

rows. As you start adding more variables to the grid, you may want to decrease the figure size. Remember that the

size FacetGrid (../generated/seaborn.FacetGrid.html#seaborn.FacetGrid) is parameterized by the height and

aspect ratio of each facet:

sns.relplot(x="timepoint", y="signal", hue="subject",

col="region", row="event", height=3,

kind="line", estimator=None, data=fmri);

When you want to examine effects across many levels of a variable, it can be a good idea to facet that variable on

the columns and then “wrap” the facets into the rows:

Visualizing statistical relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/relational.html

17 of 18 2020-01-28, 09:15

Visualisation : Relation entre deux variables
q Courbe de fonction (line plot) : tendance locale

Aggregation and representing uncertainty
More complex datasets will have multiple measurements for the same value of the x variable. The default behavior

in seaborn is to aggregate the multiple measurements at each x value by plotting the mean and the 95%

confidence interval around the mean:

fmri = sns.load_dataset("fmri")

sns.relplot(x="timepoint", y="signal", kind="line", data=fmri);

The confidence intervals are computed using bootstrapping, which can be time-intensive for larger datasets. It’s

therefore possible to disable them:

Visualizing statistical relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/relational.html

7 of 18 2020-01-28, 09:15

Observations sans
estimation de moyennes

Estimation de moyennes
et intervalle de confiance (ci)

Plotting subsets of data with semantic mappings
The lineplot() (../generated/seaborn.lineplot.html#seaborn.lineplot) function has the same flexibility as

scatterplot() (../generated/seaborn.scatterplot.html#seaborn.scatterplot): it can show up to three additional

variables by modifying the hue, size, and style of the plot elements. It does so using the same API as

scatterplot() (../generated/seaborn.scatterplot.html#seaborn.scatterplot), meaning that we don’t need to stop

and think about the parameters that control the look of lines vs. points in matplotlib.

Using semantics in lineplot() (../generated/seaborn.lineplot.html#seaborn.lineplot) will also determine how the

data get aggregated. For example, adding a hue semantic with two levels splits the plot into two lines and error

bands, coloring each to indicate which subset of the data they correspond to.

sns.relplot(x="timepoint", y="signal", hue="event", kind="line", data=fmri);

Visualizing statistical relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/relational.html

9 of 18 2020-01-28, 09:15

Visualisation : Relation entre deux variables
q Courbe de fonction (line plot) : tendance locale

3e variable : couleur (hue)
4e variable : style (style: dashes)

Adding a style semantic to a line plot changes the pattern of dashes in the line by default:

sns.relplot(x="timepoint", y="signal", hue="region", style="event",

kind="line", data=fmri);

But you can identify subsets by the markers used at each observation, either together with the dashes or instead of

them:

sns.relplot(x="timepoint", y="signal", hue="region", style="event",

dashes=False, markers=True, kind="line", data=fmri);

Visualizing statistical relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/relational.html

10 of 18 2020-01-28, 09:15

Estimation de moyennes sans
intervalle de confiance

sns.relplot(x="timepoint", y="signal", ci=None, kind="line", data=fmri);

Another good option, especially with larger data, is to represent the spread of the distribution at each timepoint by

plotting the standard deviation instead of a confidence interval:

sns.relplot(x="timepoint", y="signal", kind="line", ci="sd", data=fmri);

To turn off aggregation altogether, set the estimator parameter to None This might produce a strange effect when

the data have multiple observations at each point.

sns.relplot(x="timepoint", y="signal", estimator=None, kind="line", data=fmri);

Visualizing statistical relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/relational.html

8 of 18 2020-01-28, 09:15

Visualisation : Relation entre deux variables
q Courbe de fonction (line plot) : tendance locale

As with scatter plots, be cautious about making line plots using multiple semantics. While sometimes informative,

they can also be difficult to parse and interpret. But even when you are only examining changes across one

additional variable, it can be useful to alter both the color and style of the lines. This can make the plot more

accessible when printed to black-and-white or viewed by someone with color blindness:

sns.relplot(x="timepoint", y="signal", hue="event", style="event",

kind="line", data=fmri);

When you are working with repeated measures data (that is, you have units that were sampled multiple times), you

can also plot each sampling unit separately without distinguishing them through semantics. This avoids cluttering

the legend:

Visualizing statistical relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/relational.html

11 of 18 2020-01-28, 09:15

You can also show the influence two variables this way: one by faceting on the columns and one by faceting on the

rows. As you start adding more variables to the grid, you may want to decrease the figure size. Remember that the

size FacetGrid (../generated/seaborn.FacetGrid.html#seaborn.FacetGrid) is parameterized by the height and

aspect ratio of each facet:

sns.relplot(x="timepoint", y="signal", hue="subject",

col="region", row="event", height=3,

kind="line", estimator=None, data=fmri);

When you want to examine effects across many levels of a variable, it can be a good idea to facet that variable on

the columns and then “wrap” the facets into the rows:

Visualizing statistical relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/relational.html

17 of 18 2020-01-28, 09:15

3e variable : couleur (hue)
4e variable : style (style: markers)

Regroupement suivant 3e
variable (row) et 4e variable (col)

Visualisation : Régression entre deux variables
q Régression (reg plot, lm plot) : estimation d’une relation simple

One option is to add some random noise (“jitter”) to the discrete values to make the distribution of those values more

clear. Note that jitter is applied only to the scatterplot data and does not influence the regression line fit itself:

sns.lmplot(x="size", y="tip", data=tips, x_jitter=.05);

A second option is to collapse over the observations in each discrete bin to plot an estimate of central tendency

along with a confidence interval:

sns.lmplot(x="size", y="tip", data=tips, x_estimator=np.mean);

Visualizing linear relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/regression.html

3 of 16 2020-01-28, 12:35

Fitting different kinds of models
The simple linear regression model used above is very simple to fit, however, it is not appropriate for some kinds of

datasets. The Anscombe’s quartet (https://en.wikipedia.org/wiki/Anscombe%27s_quartet) dataset shows a few

examples where simple linear regression provides an identical estimate of a relationship where simple visual

inspection clearly shows differences. For example, in the first case, the linear regression is a good model:

anscombe = sns.load_dataset("anscombe")

sns.lmplot(x="x", y="y", data=anscombe.query("dataset == 'I'"),

ci=None, scatter_kws={"s": 80});

Visualizing linear relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/regression.html

4 of 16 2020-01-28, 12:35

A different problem is posed by “outlier” observations that deviate for some reason other than the main relationship

under study:

sns.lmplot(x="x", y="y", data=anscombe.query("dataset == 'III'"),

ci=None, scatter_kws={"s": 80});

In the presence of outliers, it can be useful to fit a robust regression, which uses a different loss function to

downweight relatively large residuals:

sns.lmplot(x="x", y="y", data=anscombe.query("dataset == 'III'"),

robust=True, ci=None, scatter_kws={"s": 80});

Visualizing linear relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/regression.html

6 of 16 2020-01-28, 12:35

When the y variable is binary, simple linear regression also “works” but provides implausible predictions:

tips["big_tip"] = (tips.tip / tips.total_bill) > .15

sns.lmplot(x="total_bill", y="big_tip", data=tips,

y_jitter=.03);

The solution in this case is to fit a logistic regression, such that the regression line shows the estimated probability of

y = 1 for a given value of x :

sns.lmplot(x="total_bill", y="big_tip", data=tips,

logistic=True, y_jitter=.03);

Visualizing linear relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/regression.html

7 of 16 2020-01-28, 12:35

Note that the logistic regression estimate is considerably more computationally intensive (this is true of robust

regression as well) than simple regression, and as the confidence interval around the regression line is computed

using a bootstrap procedure, you may wish to turn this off for faster iteration (using ci=None).

An altogether different approach is to fit a nonparametric regression using a lowess smoother

(https://en.wikipedia.org/wiki/Local_regression). This approach has the fewest assumptions, although it is

computationally intensive and so currently confidence intervals are not computed at all:

sns.lmplot(x="total_bill", y="tip", data=tips,

lowess=True);

The residplot() (../generated/seaborn.residplot.html#seaborn.residplot) function can be a useful tool for checking

whether the simple regression model is appropriate for a dataset. It fits and removes a simple linear regression and

Visualizing linear relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/regression.html

8 of 16 2020-01-28, 12:35

To add another variable, you can draw multiple “facets” which each level of the variable appearing in the rows or

columns of the grid:

sns.lmplot(x="total_bill", y="tip", hue="smoker", col="time", data=tips);

sns.lmplot(x="total_bill", y="tip", hue="smoker",

col="time", row="sex", data=tips);

Visualizing linear relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/regression.html

11 of 16 2020-01-28, 12:35

Visualisation : Régression entre deux variables
q Régression (reg plot, lm plot) : estimation d’une relation simple

One option is to add some random noise (“jitter”) to the discrete values to make the distribution of those values more

clear. Note that jitter is applied only to the scatterplot data and does not influence the regression line fit itself:

sns.lmplot(x="size", y="tip", data=tips, x_jitter=.05);

A second option is to collapse over the observations in each discrete bin to plot an estimate of central tendency

along with a confidence interval:

sns.lmplot(x="size", y="tip", data=tips, x_estimator=np.mean);

Visualizing linear relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/regression.html

3 of 16 2020-01-28, 12:35

Avec estimation d’intervalle
de confiance (ci)

To add another variable, you can draw multiple “facets” which each level of the variable appearing in the rows or

columns of the grid:

sns.lmplot(x="total_bill", y="tip", hue="smoker", col="time", data=tips);

sns.lmplot(x="total_bill", y="tip", hue="smoker",

col="time", row="sex", data=tips);

Visualizing linear relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/regression.html

11 of 16 2020-01-28, 12:35

Une des variables
est catégorielle

Visualisation : Régression entre deux variables
q Régression (reg plot, lm plot) : estimation d’une relation simple

Relation polynomiale
(order)Fitting different kinds of models

The simple linear regression model used above is very simple to fit, however, it is not appropriate for some kinds of

datasets. The Anscombe’s quartet (https://en.wikipedia.org/wiki/Anscombe%27s_quartet) dataset shows a few

examples where simple linear regression provides an identical estimate of a relationship where simple visual

inspection clearly shows differences. For example, in the first case, the linear regression is a good model:

anscombe = sns.load_dataset("anscombe")

sns.lmplot(x="x", y="y", data=anscombe.query("dataset == 'I'"),

ci=None, scatter_kws={"s": 80});

Visualizing linear relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/regression.html

4 of 16 2020-01-28, 12:35

Avec estimation de moyenne et
intervalle de confiance (ci)

A different problem is posed by “outlier” observations that deviate for some reason other than the main relationship

under study:

sns.lmplot(x="x", y="y", data=anscombe.query("dataset == 'III'"),

ci=None, scatter_kws={"s": 80});

In the presence of outliers, it can be useful to fit a robust regression, which uses a different loss function to

downweight relatively large residuals:

sns.lmplot(x="x", y="y", data=anscombe.query("dataset == 'III'"),

robust=True, ci=None, scatter_kws={"s": 80});

Visualizing linear relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/regression.html

6 of 16 2020-01-28, 12:35

Visualisation : Régression entre deux variables
q Régression (reg plot, lm plot) : estimation d’une relation simple

Lissage de la courbe
de régression (lowess)

Estimation robuste aux
données aberrantes (robust)

When the y variable is binary, simple linear regression also “works” but provides implausible predictions:

tips["big_tip"] = (tips.tip / tips.total_bill) > .15

sns.lmplot(x="total_bill", y="big_tip", data=tips,

y_jitter=.03);

The solution in this case is to fit a logistic regression, such that the regression line shows the estimated probability of

y = 1 for a given value of x :

sns.lmplot(x="total_bill", y="big_tip", data=tips,

logistic=True, y_jitter=.03);

Visualizing linear relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/regression.html

7 of 16 2020-01-28, 12:35

Note that the logistic regression estimate is considerably more computationally intensive (this is true of robust

regression as well) than simple regression, and as the confidence interval around the regression line is computed

using a bootstrap procedure, you may wish to turn this off for faster iteration (using ci=None).

An altogether different approach is to fit a nonparametric regression using a lowess smoother

(https://en.wikipedia.org/wiki/Local_regression). This approach has the fewest assumptions, although it is

computationally intensive and so currently confidence intervals are not computed at all:

sns.lmplot(x="total_bill", y="tip", data=tips,

lowess=True);

The residplot() (../generated/seaborn.residplot.html#seaborn.residplot) function can be a useful tool for checking

whether the simple regression model is appropriate for a dataset. It fits and removes a simple linear regression and

Visualizing linear relationships — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/regression.html

8 of 16 2020-01-28, 12:35

Visualisation : Relation entre deux variables dont
une catégorielle

En bande (strip plot) En essaim (swarm plot)

import seaborn as sns

import matplotlib.pyplot as plt

sns.set(style="ticks", color_codes=True)

Categorical scatterplots
The default representation of the data in catplot() (../generated/seaborn.catplot.html#seaborn.catplot) uses a

scatterplot. There are actually two different categorical scatter plots in seaborn. They take different approaches to

resolving the main challenge in representing categorical data with a scatter plot, which is that all of the points

belonging to one category would fall on the same position along the axis corresponding to the categorical variable.

The approach used by stripplot() (../generated/seaborn.stripplot.html#seaborn.stripplot), which is the default

“kind” in catplot() (../generated/seaborn.catplot.html#seaborn.catplot) is to adjust the positions of points on the

categorical axis with a small amount of random “jitter”:

tips = sns.load_dataset("tips")

sns.catplot(x="day", y="total_bill", data=tips);

The jitter parameter controls the magnitude of jitter or disables it altogether:

sns.catplot(x="day", y="total_bill", jitter=False, data=tips);

Plotting with categorical data — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/categorical.html

2 of 17 2020-01-28, 09:54

The second approach adjusts the points along the categorical axis using an algorithm that prevents them from

overlapping. It can give a better representation of the distribution of observations, although it only works well for

relatively small datasets. This kind of plot is sometimes called a “beeswarm” and is drawn in seaborn by

swarmplot() (../generated/seaborn.swarmplot.html#seaborn.swarmplot), which is activated by setting

kind="swarm" in catplot() (../generated/seaborn.catplot.html#seaborn.catplot):

sns.catplot(x="day", y="total_bill", kind="swarm", data=tips);

Similar to the relational plots, it’s possible to add another dimension to a categorical plot by using a hue semantic.

(The categorical plots do not currently support size or style semantics). Each different categorical plotting

function handles the hue semantic differently. For the scatter plots, it is only necessary to change the color of the

points:

Plotting with categorical data — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/categorical.html

3 of 17 2020-01-28, 09:54

q Point 2D : comparer les tendances globales dans les différentes catégories

Visualisation : Relation entre deux variables dont
une catégorielle

3e variable : couleur (hue)

sns.catplot(x="day", y="total_bill", hue="sex", kind="swarm", data=tips);

Unlike with numerical data, it is not always obvious how to order the levels of the categorical variable along its axis.

In general, the seaborn categorical plotting functions try to infer the order of categories from the data. If your data

have a pandas Categorical datatype, then the default order of the categories can be set there. If the variable

passed to the categorical axis looks numerical, the levels will be sorted. But the data are still treated as categorical

and drawn at ordinal positions on the categorical axes (specifically, at 0, 1, …) even when numbers are used to label

them:

sns.catplot(x="size", y="total_bill", kind="swarm",

data=tips.query("size != 3"));

Plotting with categorical data — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/categorical.html

4 of 17 2020-01-28, 09:54

The other option for choosing a default ordering is to take the levels of the category as they appear in the dataset.

The ordering can also be controlled on a plot-specific basis using the order parameter. This can be important

when drawing multiple categorical plots in the same figure, which we’ll see more of below:

sns.catplot(x="smoker", y="tip", order=["No", "Yes"], data=tips);

We’ve referred to the idea of “categorical axis”. In these examples, that’s always corresponded to the horizontal axis.

But it’s often helpful to put the categorical variable on the vertical axis (particularly when the category names are

relatively long or there are many categories). To do this, swap the assignment of variables to axes:

sns.catplot(x="total_bill", y="day", hue="time", kind="swarm", data=tips);

Plotting with categorical data — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/categorical.html

5 of 17 2020-01-28, 09:54

q Point 2D : comparer les tendances globales dans les différentes catégories

Visualisation : Relation entre deux variables dont
une catégorielle

q Diagramme à barres et dérivées : comparer les tendances centrales dans
les différentes catégories

Estimation de moyennes
En barre (bar plot)

Moyennes en
Point (point plot)

3e variable :
couleur (hue)

Compte pour une seule variable
(count plot)

A special case for the bar plot is when you want to show the number of observations in each category rather than

computing a statistic for a second variable. This is similar to a histogram over a categorical, rather than quantitative,

variable. In seaborn, it’s easy to do so with the countplot() (../generated

/seaborn.countplot.html#seaborn.countplot) function:

sns.catplot(x="deck", kind="count", palette="ch:.25", data=titanic);

Both barplot() (../generated/seaborn.barplot.html#seaborn.barplot) and countplot() (../generated

/seaborn.countplot.html#seaborn.countplot) can be invoked with all of the options discussed above, along with

others that are demonstrated in the detailed documentation for each function:

Plotting with categorical data — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/categorical.html

12 of 17 2020-01-28, 09:54

A special case for the bar plot is when you want to show the number of observations in each category rather than

computing a statistic for a second variable. This is similar to a histogram over a categorical, rather than quantitative,

variable. In seaborn, it’s easy to do so with the countplot() (../generated

/seaborn.countplot.html#seaborn.countplot) function:

sns.catplot(x="deck", kind="count", palette="ch:.25", data=titanic);

Both barplot() (../generated/seaborn.barplot.html#seaborn.barplot) and countplot() (../generated

/seaborn.countplot.html#seaborn.countplot) can be invoked with all of the options discussed above, along with

others that are demonstrated in the detailed documentation for each function:

Plotting with categorical data — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/categorical.html

12 of 17 2020-01-28, 09:54

sns.catplot(y="deck", hue="class", kind="count",

palette="pastel", edgecolor=".6",

data=titanic);

Point plots
An alternative style for visualizing the same information is offered by the pointplot() (../generated

/seaborn.pointplot.html#seaborn.pointplot) function. This function also encodes the value of the estimate with height

on the other axis, but rather than showing a full bar, it plots the point estimate and confidence interval. Additionally,

pointplot() (../generated/seaborn.pointplot.html#seaborn.pointplot) connects points from the same hue

category. This makes it easy to see how the main relationship is changing as a function of the hue semantic,

because your eyes are quite good at picking up on differences of slopes:

sns.catplot(x="sex", y="survived", hue="class", kind="point", data=titanic);

Plotting with categorical data — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/categorical.html

13 of 17 2020-01-28, 09:54

While the categorical functions lack the style semantic of the relational functions, it can still be a good idea to vary

the marker and/or linestyle along with the hue to make figures that are maximally accessible and reproduce well in

black and white:

sns.catplot(x="class", y="survived", hue="sex",

palette={"male": "g", "female": "m"},

markers=["^", "o"], linestyles=["-", "--"],

kind="point", data=titanic);

Plotting “wide-form” data
While using “long-form” or “tidy” data is preferred, these functions can also by applied to “wide-form” data in a

Plotting with categorical data — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/categorical.html

14 of 17 2020-01-28, 09:54

2e variable :
couleur (hue)

Visualisation : Relation entre deux variables dont
une catégorielle

q Boîtes à moustaches et dérivées : comparer les distributions dans les
différentes catégories

Quartiles
supplémentaires

(boxen plot)

Observations : Quartiles 1,2,3.
En bande (box plot) 3e variable : couleur (hue)

Distributions of observations within
categories
As the size of the dataset grows, categorical scatter plots become limited in the information they can provide about

the distribution of values within each category. When this happens, there are several approaches for summarizing

the distributional information in ways that facilitate easy comparisons across the category levels.

Boxplots
The first is the familiar boxplot() (../generated/seaborn.boxplot.html#seaborn.boxplot). This kind of plot shows the

three quartile values of the distribution along with extreme values. The “whiskers” extend to points that lie within 1.5

IQRs of the lower and upper quartile, and then observations that fall outside this range are displayed independently.

This means that each value in the boxplot corresponds to an actual observation in the data.

sns.catplot(x="day", y="total_bill", kind="box", data=tips);

When adding a hue semantic, the box for each level of the semantic variable is moved along the categorical axis so

they don’t overlap:

sns.catplot(x="day", y="total_bill", hue="smoker", kind="box", data=tips);

Plotting with categorical data — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/categorical.html

6 of 17 2020-01-28, 09:54

This behavior is called “dodging” and is turned on by default because it is assumed that the semantic variable is

nested within the main categorical variable. If that’s not the case, you can disable the dodging:

tips["weekend"] = tips["day"].isin(["Sat", "Sun"])

sns.catplot(x="day", y="total_bill", hue="weekend",

kind="box", dodge=False, data=tips);

A related function, boxenplot() (../generated/seaborn.boxenplot.html#seaborn.boxenplot), draws a plot that is

similar to a box plot but optimized for showing more information about the shape of the distribution. It is best suited

for larger datasets:

Plotting with categorical data — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/categorical.html

7 of 17 2020-01-28, 09:54

diamonds = sns.load_dataset("diamonds")

sns.catplot(x="color", y="price", kind="boxen",

data=diamonds.sort_values("color"));

Violinplots
A different approach is a violinplot() (../generated/seaborn.violinplot.html#seaborn.violinplot), which combines a

boxplot with the kernel density estimation procedure described in the distributions (distributions.html#distribution-

tutorial) tutorial:

sns.catplot(x="total_bill", y="day", hue="sex",

kind="violin", data=tips);

Plotting with categorical data — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/categorical.html

8 of 17 2020-01-28, 09:54

Visualisation : Relation entre deux variables dont
une catégorielle

q Boîtes à moustaches et dérivées : comparer les distributions dans les
différentes catégories

Estimation de distributions
En violon (violin plot)

This approach uses the kernel density estimate to provide a richer description of the distribution of values.

Additionally, the quartile and whisker values from the boxplot are shown inside the violin. The downside is that,

because the violinplot uses a KDE, there are some other parameters that may need tweaking, adding some

complexity relative to the straightforward boxplot:

sns.catplot(x="total_bill", y="day", hue="sex",

kind="violin", bw=.15, cut=0,

data=tips);

It’s also possible to “split” the violins when the hue parameter has only two levels, which can allow for a more

efficient use of space:

Plotting with categorical data — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/categorical.html

9 of 17 2020-01-28, 09:54

Visualisation : Relation entre deux variables dont
une catégorielle

q Boîtes à moustaches et dérivées : comparer les distributions dans les
différentes catégories

3e variable : couleur (hue, split)

This approach uses the kernel density estimate to provide a richer description of the distribution of values.

Additionally, the quartile and whisker values from the boxplot are shown inside the violin. The downside is that,

because the violinplot uses a KDE, there are some other parameters that may need tweaking, adding some

complexity relative to the straightforward boxplot:

sns.catplot(x="total_bill", y="day", hue="sex",

kind="violin", bw=.15, cut=0,

data=tips);

It’s also possible to “split” the violins when the hue parameter has only two levels, which can allow for a more

efficient use of space:

Plotting with categorical data — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/categorical.html

9 of 17 2020-01-28, 09:54

sns.catplot(x="day", y="total_bill", hue="sex",

kind="violin", split=True, data=tips);

Finally, there are several options for the plot that is drawn on the interior of the violins, including ways to show each

individual observation instead of the summary boxplot values:

sns.catplot(x="day", y="total_bill", hue="sex",

kind="violin", inner="stick", split=True,

palette="pastel", data=tips);

It can also be useful to combine swarmplot() (../generated/seaborn.swarmplot.html#seaborn.swarmplot) or

striplot() with a box plot or violin plot to show each observation along with a summary of the distribution:

Plotting with categorical data — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/categorical.html

10 of 17 2020-01-28, 09:54

Large de bande (bandwidth bw)
3e variable : couleur (hue)

Visualisation : Relation entre deux variables dont
une catégorielle

q Boîtes à moustaches et dérivées : comparer les distributions dans les
différentes catégories

sns.catplot(x="day", y="total_bill", hue="sex",

kind="violin", split=True, data=tips);

Finally, there are several options for the plot that is drawn on the interior of the violins, including ways to show each

individual observation instead of the summary boxplot values:

sns.catplot(x="day", y="total_bill", hue="sex",

kind="violin", inner="stick", split=True,

palette="pastel", data=tips);

It can also be useful to combine swarmplot() (../generated/seaborn.swarmplot.html#seaborn.swarmplot) or

striplot() with a box plot or violin plot to show each observation along with a summary of the distribution:

Plotting with categorical data — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/categorical.html

10 of 17 2020-01-28, 09:54

g = sns.catplot(x="day", y="total_bill", kind="violin", inner=None, data=tips)

sns.swarmplot(x="day", y="total_bill", color="k", size=3, data=tips, ax=g.ax);

Statistical estimation within categories
For other applications, rather than showing the distribution within each category, you might want to show an

estimate of the central tendency of the values. Seaborn has two main ways to show this information. Importantly, the

basic API for these functions is identical to that for the ones discussed above.

Bar plots
A familiar style of plot that accomplishes this goal is a bar plot. In seaborn, the barplot() (../generated

/seaborn.barplot.html#seaborn.barplot) function operates on a full dataset and applies a function to obtain the

estimate (taking the mean by default). When there are multiple observations in each category, it also uses

bootstrapping to compute a confidence interval around the estimate, which is plotted using error bars:

titanic = sns.load_dataset("titanic")

sns.catplot(x="sex", y="survived", hue="class", kind="bar", data=titanic);

Plotting with categorical data — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/categorical.html

11 of 17 2020-01-28, 09:54

Inner : stickInner : swarmplot

q Distribution univariée

Estimation de distributions
suivant loi normale

En courbe (kde plot)

Histograms
Histograms are likely familiar, and a hist function already exists in matplotlib. A histogram represents the

distribution of data by forming bins along the range of the data and then drawing bars to show the number of

observations that fall in each bin.

To illustrate this, let’s remove the density curve and add a rug plot, which draws a small vertical tick at each

observation. You can make the rug plot itself with the rugplot() (../generated

/seaborn.rugplot.html#seaborn.rugplot) function, but it is also available in distplot() (../generated

/seaborn.distplot.html#seaborn.distplot):

sns.distplot(x, kde=False, rug=True);

When drawing histograms, the main choice you have is the number of bins to use and where to place them.

distplot() (../generated/seaborn.distplot.html#seaborn.distplot) uses a simple rule to make a good guess for

what the right number is by default, but trying more or fewer bins might reveal other features in the data:

sns.distplot(x, bins=20, kde=False, rug=True);

Visualizing the distribution of a dataset — seaborn 0.10.0 documen... https://seaborn.pydata.org/tutorial/distributions.html

2 of 14 2020-01-28, 11:20

Kernel density estimation
The kernel density estimate may be less familiar, but it can be a useful tool for plotting the shape of a distribution.

Like the histogram, the KDE plots encode the density of observations on one axis with height along the other axis:

sns.distplot(x, hist=False, rug=True);

Drawing a KDE is more computationally involved than drawing a histogram. What happens is that each observation

is first replaced with a normal (Gaussian) curve centered at that value:

Visualizing the distribution of a dataset — seaborn 0.10.0 documen... https://seaborn.pydata.org/tutorial/distributions.html

3 of 14 2020-01-28, 11:20

Observation
En histogramme (hist plot)

Visualisation : Distribution univariée et bivariée

q Distribution univariée

Histograms
Histograms are likely familiar, and a hist function already exists in matplotlib. A histogram represents the

distribution of data by forming bins along the range of the data and then drawing bars to show the number of

observations that fall in each bin.

To illustrate this, let’s remove the density curve and add a rug plot, which draws a small vertical tick at each

observation. You can make the rug plot itself with the rugplot() (../generated

/seaborn.rugplot.html#seaborn.rugplot) function, but it is also available in distplot() (../generated

/seaborn.distplot.html#seaborn.distplot):

sns.distplot(x, kde=False, rug=True);

When drawing histograms, the main choice you have is the number of bins to use and where to place them.

distplot() (../generated/seaborn.distplot.html#seaborn.distplot) uses a simple rule to make a good guess for

what the right number is by default, but trying more or fewer bins might reveal other features in the data:

sns.distplot(x, bins=20, kde=False, rug=True);

Visualizing the distribution of a dataset — seaborn 0.10.0 documen... https://seaborn.pydata.org/tutorial/distributions.html

2 of 14 2020-01-28, 11:20

we get the same curve. This function is used by distplot() (../generated/seaborn.distplot.html#seaborn.distplot),

but it provides a more direct interface with easier access to other options when you just want the density estimate:

sns.kdeplot(x, shade=True);

The bandwidth (bw) parameter of the KDE controls how tightly the estimation is fit to the data, much like the bin size

in a histogram. It corresponds to the width of the kernels we plotted above. The default behavior tries to guess a

good value using a common reference rule, but it may be helpful to try larger or smaller values:

sns.kdeplot(x)

sns.kdeplot(x, bw=.2, label="bw: 0.2")

sns.kdeplot(x, bw=2, label="bw: 2")

plt.legend();

As you can see above, the nature of the Gaussian KDE process means that estimation extends past the largest and

smallest values in the dataset. It’s possible to control how far past the extreme values the curve is drawn with the

cut parameter; however, this only influences how the curve is drawn and not how it is fit:

sns.kdeplot(x, shade=True, cut=0)

sns.rugplot(x);

Visualizing the distribution of a dataset — seaborn 0.10.0 documen... https://seaborn.pydata.org/tutorial/distributions.html

5 of 14 2020-01-28, 11:20

Large de bande (bandwidth bw)
3e variable : couleur (hue)

Histogramme + courbe

Visualisation : Distribution univariée et bivariée

q Distribution univariée

Fitting parametric distributions
You can also use distplot() (../generated/seaborn.distplot.html#seaborn.distplot) to fit a parametric distribution

to a dataset and visually evaluate how closely it corresponds to the observed data:

x = np.random.gamma(6, size=200)

sns.distplot(x, kde=False, fit=stats.gamma);

Plotting bivariate distributions
It can also be useful to visualize a bivariate distribution of two variables. The easiest way to do this in seaborn is to

just use the jointplot() (../generated/seaborn.jointplot.html#seaborn.jointplot) function, which creates a multi-

panel figure that shows both the bivariate (or joint) relationship between two variables along with the univariate (or

marginal) distribution of each on separate axes.

mean, cov = [0, 1], [(1, .5), (.5, 1)]

data = np.random.multivariate_normal(mean, cov, 200)

df = pd.DataFrame(data, columns=["x", "y"])

Visualizing the distribution of a dataset — seaborn 0.10.0 documen... https://seaborn.pydata.org/tutorial/distributions.html

6 of 14 2020-01-28, 11:20

Estimation de distributions
suivant une loi donnée

Ex: loi gamma

Visualisation : Distribution univariée et bivariée

Visualisation : Distribution univariée et bivariée
q Distribution bivariée : graphique conjoint bivarié + 2 univarié (joint plot, joint grid)

Bivarié hexagone (hex) + univarié (hist)Bivarié (scatter) + univarié (hist)

Scatterplots
The most familiar way to visualize a bivariate distribution is a scatterplot, where each observation is shown with point

at the x and y values. This is analogous to a rug plot on two dimensions. You can draw a scatterplot with

scatterplot() (../generated/seaborn.scatterplot.html#seaborn.scatterplot), and it is also the default kind of plot

shown by the jointplot() (../generated/seaborn.jointplot.html#seaborn.jointplot) function:

sns.jointplot(x="x", y="y", data=df);

Hexbin plots
A bivariate analogue of a histogram is known as a “hexbin” plot, because it shows the counts of observations that

fall within hexagonal bins. This plot works best with relatively large datasets. It’s available through in matplotlib as

matplotlib.axes.Axes.hexbin() (https://matplotlib.org/api/_as_gen

/matplotlib.axes.Axes.hexbin.html#matplotlib.axes.Axes.hexbin) and as a style in jointplot() (../generated

/seaborn.jointplot.html#seaborn.jointplot). It looks best with a white background:

x, y = np.random.multivariate_normal(mean, cov, 1000).T

with sns.axes_style("white"):

sns.jointplot(x=x, y=y, kind="hex", color="k");

Visualizing the distribution of a dataset — seaborn 0.10.0 documen... https://seaborn.pydata.org/tutorial/distributions.html

7 of 14 2020-01-28, 11:20

Kernel density estimation
It is also possible to use the kernel density estimation procedure described above to visualize a bivariate distribution.

In seaborn, this kind of plot is shown with a contour plot and is available as a style in jointplot() (../generated

/seaborn.jointplot.html#seaborn.jointplot):

sns.jointplot(x="x", y="y", data=df, kind="kde");

Visualizing the distribution of a dataset — seaborn 0.10.0 documen... https://seaborn.pydata.org/tutorial/distributions.html

8 of 14 2020-01-28, 11:20

Visualisation : Distribution univariée et bivariée
q Distribution bivariée : graphique conjoint bivarié + 2 univarié (joint plot, joint grid)

Bivarié (kde) +
univarié (kde)

You can also draw a two-dimensional kernel density plot with the kdeplot() (../generated

/seaborn.kdeplot.html#seaborn.kdeplot) function. This allows you to draw this kind of plot onto a specific (and

possibly already existing) matplotlib axes, whereas the jointplot() (../generated

/seaborn.jointplot.html#seaborn.jointplot) function manages its own figure:

f, ax = plt.subplots(figsize=(6, 6))

sns.kdeplot(df.x, df.y, ax=ax)

sns.rugplot(df.x, color="g", ax=ax)

sns.rugplot(df.y, vertical=True, ax=ax);

Visualizing the distribution of a dataset — seaborn 0.10.0 documen... https://seaborn.pydata.org/tutorial/distributions.html

9 of 14 2020-01-28, 11:20

Replace the scatterplot with a joint histogram using hexagonal bins:

>>> g = sns.jointplot("total_bill", "tip", data=tips, kind="hex")

seaborn.jointplot — seaborn 0.10.0 documentation https://seaborn.pydata.org/generated/seaborn.jointplot.html#seabor...

4 of 10 2020-01-28, 12:02

Bivarié : regression (reg) +
univarié (hist + kde)

Visualisation : Distribution univariée et bivariée
q Distribution bivariée : graphique conjoint bivarié + 2 univarié (joint plot, joint grid)

other aspects of the visualization:

g = sns.jointplot(x="x", y="y", data=df, kind="kde", color="m")

g.plot_joint(plt.scatter, c="w", s=30, linewidth=1, marker="+")

g.ax_joint.collections[0].set_alpha(0)

g.set_axis_labels("X", "Y");

Visualizing pairwise relationships in a dataset
To plot multiple pairwise bivariate distributions in a dataset, you can use the pairplot() (../generated

/seaborn.pairplot.html#seaborn.pairplot) function. This creates a matrix of axes and shows the relationship for each

pair of columns in a DataFrame. By default, it also draws the univariate distribution of each variable on the diagonal

Axes:

iris = sns.load_dataset("iris")

sns.pairplot(iris);

Visualizing the distribution of a dataset — seaborn 0.10.0 documen... https://seaborn.pydata.org/tutorial/distributions.html

11 of 14 2020-01-28, 11:20

Pass vectors in directly without using Pandas, then name the axes:

>>> x, y = np.random.randn(2, 300)

>>> g = (sns.jointplot(x, y, kind="hex")

... .set_axis_labels("x", "y"))

seaborn.jointplot — seaborn 0.10.0 documentation https://seaborn.pydata.org/generated/seaborn.jointplot.html#seabor...

7 of 10 2020-01-28, 12:02

Bivarié (kde + scatter) +
univarié (kde)

Bivarié : (scatter + kde) +
univarié (hist)

q Distribution bivariée : pour toutes les paires d’attributs (pair plot, pair grid)
Case diagonale univarié

(diag_kind : hist, kde)

Specifying the hue parameter automatically changes the histograms to KDE plots to facilitate comparisons

between multiple distributions.

sns.pairplot(iris, hue="species");

Visualizing the distribution of a dataset — seaborn 0.10.0 documen... https://seaborn.pydata.org/tutorial/distributions.html

12 of 14 2020-01-28, 11:20

Much like the relationship between jointplot() (../generated/seaborn.jointplot.html#seaborn.jointplot) and

JointGrid (../generated/seaborn.JointGrid.html#seaborn.JointGrid), the pairplot() (../generated

/seaborn.pairplot.html#seaborn.pairplot) function is built on top of a PairGrid (../generated

/seaborn.PairGrid.html#seaborn.PairGrid) object, which can be used directly for more flexibility:

g = sns.PairGrid(iris)

g.map_diag(sns.kdeplot)

g.map_offdiag(sns.kdeplot, n_levels=6);

Visualizing the distribution of a dataset — seaborn 0.10.0 documen... https://seaborn.pydata.org/tutorial/distributions.html

13 of 14 2020-01-28, 11:20

Back to top© Copyright 2012-2020, Michael Waskom (http://www.cns.nyu.edu/~mwaskom). Created using Sphinx

(http://sphinx-doc.org/) 2.3.1.

Visualizing the distribution of a dataset — seaborn 0.10.0 documen... https://seaborn.pydata.org/tutorial/distributions.html

14 of 14 2020-01-28, 11:20

Autre cas bivarié
(kind : scatter, reg, kde, hex)

Visualisation : Distributions univariée et bivariée

q Matrice de couleurs (heatmap,clustermap): valeurs => couleurs

Heatmap

Visualisation : Données rectangulairesPlot a dataframe with meaningful row and column labels:

>>> flights = sns.load_dataset("flights")

>>> flights = flights.pivot("month", "year", "passengers")

>>> ax = sns.heatmap(flights)

Annotate each cell with the numeric value using integer formatting:

>>> ax = sns.heatmap(flights, annot=True, fmt="d")

seaborn.heatmap — seaborn 0.10.0 documentation https://seaborn.pydata.org/generated/seaborn.heatmap.html#seabor...

5 of 11 2020-01-29, 18:43

Add lines between each cell:

>>> ax = sns.heatmap(flights, linewidths=.5)

seaborn.heatmap — seaborn 0.10.0 documentation https://seaborn.pydata.org/generated/seaborn.heatmap.html#seabor...

6 of 11 2020-01-29, 18:43

q Matrice de couleurs (heatmap,clustermap): valeurs => couleurs

Visualisation : Données rectangulaires

Change the size and layout of the figure:

>>> g = sns.clustermap(iris,

... figsize=(7, 5),

... row_cluster=False,

... dendrogram_ratio=(.1, .2),

... cbar_pos=(0, .2, .03, .4))

seaborn.clustermap — seaborn 0.10.0 documentation https://seaborn.pydata.org/generated/seaborn.clustermap.html#sea...

4 of 11 2020-01-29, 18:47

Clustermap: choix de la mesure de distance ou de similarité.

Visualisation : Grille multi-graphique
q Groupement suivant deux variables (FacetGrid) (row, column)

g = sns.FacetGrid(tips, col="sex", hue="smoker")

g.map(plt.scatter, "total_bill", "tip", alpha=.7)

g.add_legend();

There are several options for controlling the look of the grid that can be passed to the class constructor.

g = sns.FacetGrid(tips, row="smoker", col="time", margin_titles=True)

g.map(sns.regplot, "size", "total_bill", color=".3", fit_reg=False, x_jitter=.1);

Note that margin_titles isn’t formally supported by the matplotlib API, and may not work well in all cases. In

particular, it currently can’t be used with a legend that lies outside of the plot.

The size of the figure is set by providing the height of each facet, along with the aspect ratio:

Building structured multi-plot grids — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/axis_grids.html

3 of 20 2020-01-29, 18:59

g = sns.FacetGrid(tips, col="sex", hue="smoker")

g.map(plt.scatter, "total_bill", "tip", alpha=.7)

g.add_legend();

There are several options for controlling the look of the grid that can be passed to the class constructor.

g = sns.FacetGrid(tips, row="smoker", col="time", margin_titles=True)

g.map(sns.regplot, "size", "total_bill", color=".3", fit_reg=False, x_jitter=.1);

Note that margin_titles isn’t formally supported by the matplotlib API, and may not work well in all cases. In

particular, it currently can’t be used with a legend that lies outside of the plot.

The size of the figure is set by providing the height of each facet, along with the aspect ratio:

Building structured multi-plot grids — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/axis_grids.html

3 of 20 2020-01-29, 18:59

Visualisation : Grille multi-graphique

q Grille de relations deux-à-deux entre toutes les variables (PairGrid)

The square grid with identity relationships on the diagonal is actually just a special case, and you can plot with

different variables in the rows and columns.

g = sns.PairGrid(tips, y_vars=["tip"], x_vars=["total_bill", "size"], height=4)

g.map(sns.regplot, color=".3")

g.set(ylim=(-1, 11), yticks=[0, 5, 10]);

Building structured multi-plot grids — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/axis_grids.html

17 of 20 2020-01-29, 18:59

The square grid with identity relationships on the diagonal is actually just a special case, and you can plot with

different variables in the rows and columns.

g = sns.PairGrid(tips, y_vars=["tip"], x_vars=["total_bill", "size"], height=4)

g.map(sns.regplot, color=".3")

g.set(ylim=(-1, 11), yticks=[0, 5, 10]);

Building structured multi-plot grids — seaborn 0.10.0 documentation https://seaborn.pydata.org/tutorial/axis_grids.html

17 of 20 2020-01-29, 18:59

Visualisation : Grille multi-graphique

q Relation ou distribution bivariée couplée aux 2 distributions univariées
(JointGrid)

>>> import seaborn as sns; sns.set(style="ticks", color_codes=True)

>>> tips = sns.load_dataset("tips")

>>> g = sns.JointGrid(x="total_bill", y="tip", data=tips)

Add plots using default parameters:

>>> g = sns.JointGrid(x="total_bill", y="tip", data=tips)

>>> g = g.plot(sns.regplot, sns.distplot)

seaborn.JointGrid — seaborn 0.10.0 documentation https://seaborn.pydata.org/generated/seaborn.JointGrid.html#seabo...

2 of 9 2020-01-29, 19:04

Draw the join and marginal plots separately, which allows finer-level control other parameters:

>>> import matplotlib.pyplot as plt

>>> g = sns.JointGrid(x="total_bill", y="tip", data=tips)

>>> g = g.plot_joint(sns.scatterplot, color=".5")

>>> g = g.plot_marginals(sns.distplot, kde=False, color=".5")

seaborn.JointGrid — seaborn 0.10.0 documentation https://seaborn.pydata.org/generated/seaborn.JointGrid.html#seabo...

3 of 9 2020-01-29, 19:04

Point3D (Scatter plot) Courbe reliant Point3D (line plot)

Visualisation : 3D (Matplotlib)
(Source code, png, pdf)

Sca"er plots
Axes3D.scatter(xs, ys, zs=0, zdir='z', s=20, c=None, depthshade=True, *args,
**kwargs)

Create a scatter plot.

Argument Description
xs, ys Positions of data points.

zs Either an array of the same length as xs and ys or a single value to place all
points in the same plane. Default is 0.

zdir Which direction to use as z (‘x’, ‘y’ or ‘z’) when plotting a 2D set.

s Size in points^2. It is a scalar or an array of the same length as x and y.

c A color. c can be a single color format string, or a sequence of color
specifications of length N, or a sequence of N numbers to be mapped to colors
using the cmap and norm specified via kwargs (see below). Note that c should
not be a single numeric RGB or RGBA sequence because that is
indistinguishable from an array of values to be colormapped. c can be a 2-D
array in which the rows are RGB or RGBA, however, including the case of a
single row to specify the same color for all points.

depthshade Whether or not to shade the scatter markers to give the appearance of depth.
Default is True.

Keyword arguments are passed on to scatter().

Returns a Patch3DCollection

(Source code, png, pdf)

mplot3d tutorial — Matplotlib 2.0.2 documentation https://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html

2 of 16 2020-01-29, 20:24

Wireframe plots
Axes3D.plot_wireframe(X, Y, Z, *args, **kwargs)

Plot a 3D wireframe.

The rstride and cstride kwargs set the stride used to sample the input data to generate
the graph. If either is 0 the input data in not sampled along this direction producing a 3D
line plot rather than a wireframe plot. The stride arguments are only used by default if in
the ‘classic’ mode. They are now superseded by rcount and ccount. Will raise ValueError
if both stride and count are used.

` The rcount and ccount kwargs supersedes rstride and

cstride for default sampling method for wireframe plotting. These arguments will determine at
most how many evenly spaced samples will be taken from the input data to generate the graph.
This is the default sampling method unless using the ‘classic’ style. Will raise ValueError if both
stride and count are specified. If either is zero, then the input data is not sampled along this
direction, producing a 3D line plot rather than a wireframe plot. Added in v2.0.0.

Argument Description
X, Y, Data values as 2D arrays

Z

rstride Array row stride (step size), defaults to 1

cstride Array column stride (step size), defaults to 1

rcount Use at most this many rows, defaults to 50

ccount Use at most this many columns, defaults to 50

Keyword arguments are passed on to LineCollection.

Returns a Line3DCollection

(Source code, png, pdf)

mplot3d tutorial — Matplotlib 2.0.2 documentation https://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html

3 of 16 2020-01-29, 20:24

Quiver
Axes3D.quiver(*args, **kwargs)

Plot a 3D field of arrows.

call signatures:

quiver(X, Y, Z, U, V, W, **kwargs)

Arguments:

X, Y, Z:
The x, y and z coordinates of the arrow locations (default is tail of arrow; see pivot
kwarg)

U, V, W:
The x, y and z components of the arrow vectors

The arguments could be array-like or scalars, so long as they they can be broadcast together. The
arguments can also be masked arrays. If an element in any of argument is masked, then that
corresponding quiver element will not be plotted.

Keyword arguments:

length: [1.0 | float]
The length of each quiver, default to 1.0, the unit is the same with the axes

arrow_length_ratio: [0.3 | float]
The ratio of the arrow head with respect to the quiver, default to 0.3

pivot: [‘tail’ | ‘middle’ | ‘tip’]
The part of the arrow that is at the grid point; the arrow rotates about this point,
hence the name pivot. Default is ‘tail’

normalize: [False | True]
When True, all of the arrows will be the same length. This defaults to False, where the
arrows will be different lengths depending on the values of u,v,w.

Any additional keyword arguments are delegated to LineCollection

(Source code, png, pdf)

mplot3d tutorial — Matplotlib 2.0.2 documentation https://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html

13 of 16 2020-01-29, 20:24

q Relation entre 3 variables

Courbe reliant Point3D (bar plot)

q Distribution tri-variée

indexmodules |home | examples | tutorials | API | contents »

Quick search

Go

Related Topics

Documentation overview

Show Page Source

Create 3D histogram of 2D data
Demo of a histogram for 2 dimensional data as a bar graph in 3D.

Version 3.1.0Fork me on GitHub

This import registers the 3D projection, but is otherwise unused.
ffrroomm mmppll__ttoooollkkiittss..mmpplloott33dd iimmppoorrtt Axes3D # noqa: F401 unused import

iimmppoorrtt mmaattpplloottlliibb..ppyypplloott aass pplltt
iimmppoorrtt nnuummppyy aass nnpp

Fixing random state for reproducibility
np.random.seed(19680801)

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x, y = np.random.rand(2, 100) * 4
hist, xedges, yedges = np.histogram2d(x, y, bins=4, range=[[

Construct arrays for the anchor positions of the 16 bars.
xpos, ypos = np.meshgrid(xedges[:-1] + 0.25, yedges[:-1] +

Create 3D histogram of 2D data — Matplotlib 3.1.0 documentation https://matplotlib.org/3.1.0/gallery/mplot3d/hist3d.html#sphx-glr-g...

1 of 2 2020-01-29, 20:35

q Distribution bi-variée
Histogramme (hist plot)

Surface plots
Axes3D.plot_surface(X, Y, Z, *args, **kwargs)

Create a surface plot.

By default it will be colored in shades of a solid color, but it also supports color mapping by supplying
the cmap argument.

The rstride and cstride kwargs set the stride used to sample the input data to generate the graph. If
1k by 1k arrays are passed in, the default values for the strides will result in a 100x100 grid being
plotted. Defaults to 10. Raises a ValueError if both stride and count kwargs (see next section) are
provided.

The rcount and ccount kwargs supersedes rstride and cstride for default sampling method for
surface plotting. These arguments will determine at most how many evenly spaced samples will be
taken from the input data to generate the graph. This is the default sampling method unless using the
‘classic’ style. Will raise ValueError if both stride and count are specified. Added in v2.0.0.

Argument Description
X, Y, Z Data values as 2D arrays

rstride Array row stride (step size)

cstride Array column stride (step size)

rcount Use at most this many rows, defaults to 50

ccount Use at most this many columns, defaults to 50

color Color of the surface patches

cmap A colormap for the surface patches.

facecolors Face colors for the individual patches

norm An instance of Normalize to map values to colors

vmin Minimum value to map

vmax Maximum value to map

shade Whether to shade the facecolors

Other arguments are passed on to Poly3DCollection

(Source code, png, pdf)

mplot3d tutorial — Matplotlib 2.0.2 documentation https://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html

4 of 16 2020-01-29, 20:24

wireframe plot, surface plot

Mesure de similarité / dissimilarité

q Similarité : mesure de la ressemblance entre deux objets. Plus les
objets se ressemble, plus la mesure est élevée.

q Dissimilarité : mesure de la différence entre deux objets. Plus les
objets sont différents, plus la mesure est élevée.

 Exemple : distance

Matrice rectangulaire (n x m) de n objets
représentés sur k dimensions

Matrice carré (n x n) symétrique ou
triangulaire des distances

deux-à-deux

0
d2,1 0

d3,1 d3,2 0

: : :
dn,1 dn,2 ... dn,n−1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

x
11

... x
1j

... x
1m

...
x
i1

... x
ij

... x
im

...
x
n1

... x
nj

... x
nm

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Similarité / dissimilarité entre vecteurs de valeurs
catégorielles

q Proportion d’égalités (similarité):

q Proportion de différences (dissimilarité):

q Autre méthode : transformer chaque attribut catégoriel à v valeurs en
v attributs binaires, puis appliquer une mesure de similarité ou
dissimilarité entre vecteurs binaires.

s(xi, x j) =
(xik ≡ x jk

k=1

m

∑)

m

d(xi, x j) =
(xik ≠ x jk

k=1

m

∑)

m

Similarité / dissimilarité entre vecteurs de valeurs
binaires

q Matrice de contingence:

q Distance pour variables binaires
 symétriques:

q Distance pour variables binaires
 asymétriques:

q Coefficient de correspondance
 simple (SMC) (similarité pour
 variables binaires symétriques):

q Coefficient de Jaccard (similarité pour
 variables binaires non-symétriques):

d(xi, x j) =
m01+m10

m

Jaccard(xi, x j) =
m11

m11+m01+m10

0
xi
1

xj
0 1

m00 m01

m10 m11
m = m00 + m01 + m10 + m11

SMC(xi, x j) =
m00+m11

m

d(xi, x j) =
m01+m10

m01+m10+m11

Similarité / dissimilarité entre vecteurs de valeurs
ordinales

q Pour chaque variable ordinale, remplacer chaque valeur par son rang,
puis appliquer une mesure de similarité ou dissimilarité entre vecteurs
numériques.

Similarité / dissimilarité entre vecteurs de valeurs
numériques

q Distance de Minkowski :

q Si h = 1 (norme L1) : Distance de Manhattan (Distance de Hamming
pour vecteurs binaires)

q Si h = 2 (norme L2) : Distance euclidienne

q Si h = infini : Supremum (plus grande différence parmi tous les
attributs)

d(xi, x j) = | xik − x jk

k=1

m

∑ |h h

50

Matrices de
dissimilarité

attribut 1 attribut 2
x1 1 2
x2 3 5
x3 2 0
x4 4 5

! "# "$ "% "&
"# !
"$ " !
"% # $!
"& $ % & !

!" #$ #" #% #&
#$!
#" "#$% !
#% &#&' (#% !
#& '#&' % (#") !

!∞ "# "$ "% "&
"# !
"$ " !
"% # $!
"& " % $!

Manhattan (L1)

Euclidienne (L2)

Supremum

! " #

"

#

$%

$"

$&

$#

Similarité / dissimilarité entre vecteurs de valeurs
numériques

q Distance de Minkowski :

Similarité / dissimilarité entre vecteurs de valeurs
numériques

q Distance de Mahalanobis : distance entre deux points en tenant compte de la
contribution de différentes variances et des corrélations existant entre elles.

Σ =

σ1
2 σ 2,1 σ 3,1 ... σ m,1

σ 2,1 σ 2
2 σ 3,2 ... σ m,2

σ 3,1 σ 3,2 σ 3
2 ... σ m,3

: : : : :

σ m,1 σ m,2 ... σ m,m−1 σ m
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

σ k
2 =

1

n−1
(xik − x.k)2

i=1

n

∑

σ k,l =
1

n−1
(xik − x.k)∗

i=1

n

∑ (xil − x.l)

x
11

... x
1j

... x
1m

...
x
i1

... x
ij

... x
im

...
x
n1

... x
nj

... x
nm

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

D = xi − x j

Euclidienne : d(xi, x j) = Dt. D

Mahalanobis : dm (xi, x j) = Dt. Σ−1.D

Similarité / dissimilarité entre vecteurs de valeurs
numériques

q Similarité de Cosinus : cosinus de l’angle entre les vecteurs xi et xj

 Compare uniquement l’orientation des deux vecteurs

cos(xi, x j) =
xi • x j

|| xi ||∗ || x j ||
=

xik ∗ x jk

k=1

m

∑

x2
ik

k=1

m

∑ ∗ x2
jk

k=1

m

∑

Similarité / dissimilarité entre vecteurs de valeurs
numériques

q Coefficient de corrélation :

cor(xi, x j) =
(xik − xi.)∗ (x jk − x j.)

k=1

m

∑

(xik − xi.)
2

k=1

m

∑ ∗ (x jk − x j.)
2

k=1

m

∑

cor(xi,xj) = +1
Parfaite corrélation positive

cor(xi,xj) proche de +1
Forte corrélaton positive

cor(xi,xj) proche de +1
Forte corrélation négative

cor(xi,xj) proche de 0
Pas de corrélation

Références

[1] PEDREGOSA et al. : Scikit-learn : Machine Learning in Python.
JMLR 12, pp. 2825-2830. (User guide and API : https ://scikit-
learn.org/stable/), 2011.

[2] Jiawei HAN, Micheline KAMBER, Jian PEI. DataMining: Concepts
and Techniques (Third edition). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2011.

