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Partie I : Théorie



Prétraitement

q Auscultation (qualité des données)

q Nettoyage

q Intégration

q Réduction

q Transformation

q Discrétisation/binarisation



Auscultation

q Auscultation (qualité des données)

v Correctitude

v Complétude

v Cohérence

v À jour

v Vraisemblable

v Interprétable



Prétraitement

q Auscultation (qualité des données)

q Nettoyage

q Intégration

q Réduction

q Transformation

q Discrétisation/binarisation



Nettoyage

q Nettoyage : exemple de cas

v Données incomplètes : manque de valeurs d'attribut, ou 
manque de certains attributs intéressants

    Exemple : Annee = 

v Données bruitées: contenant du bruit, des erreurs ou des 
valeurs aberrantes.

    Exemple : Prix = -1000

v Données incohérentes: contenant des incohérences entre 
valeurs d’attributs. 

   Exemple : Age = 40 et DateNaissance = "01/01/1900";
    Valeurs «1, 2, 3,A,B,C» pour attribut catégoriel;
    Même valeurs pour plusieurs objets.



Nettoyage
q Nettoyage : dans le cas de données incomplètes
    (Module sklearn.impute : model.fit() … model.transform())

v Retirer les objets incomplets : à condition qu’il reste assez de 
données

v Completer les valeurs manquantes

• Manuellement, si on sait où les retrouver

• Automatiquement avec :
o La moyenne globale
o La moyenne suivant la classe
o La valeur la plus probable (inférence bayésienne ou

arbre de décision)



Nettoyage

q Nettoyage : dans le cas de données bruitées
    (Lissage : nettoyer le bruit pour réduire les irrégularités du modèle)

v Partitionner les données en parts de fréquence égale puis 
nettoyer par moyenne, médiane ou bornes

v Nettoyer après avoir appliquer un modèle de régression 

v Détecter par clustering et nettoyer les valeurs aberrantes 
(extrêmes) 

v Détecter et nettoyer manuellement les valeurs suspectes



Nettoyage

q Nettoyage : dans le cas de données incohérentes

v Utiliser des métadonnées
   Exemple: ensemble ou intervalle des valeurs, distribution,     
   relations

v Vérifier les règles d'unicité, de consécutivité ou toute autre 
règle connue

v Explorer les données pour découvrir des règles et des 
relations, et détecter les valeurs suspectes

   Exemple: corrélation et regroupement pour trouver les valeurs 
aberrantes



Prétraitement

q Auscultation (qualité des données)

q Nettoyage

q Intégration

q Réduction

q Transformation

q Discrétisation/binarisation



Intégration

q Intégration : Combinaison de données de sources multiples

v Identifier les objets ou attributs redondants
   Exemple : analyse de corrélation/co-variance

v Résoudre les conflits de valeurs d’attributs
   Exemple : différentes échelles, unités de mesure



Prétraitement

q Auscultation (qualité des données)

q Nettoyage

q Intégration

q Réduction

q Transformation

q Discrétisation/binarisation



Réduction

q Réduction : réduire le volume des données pour 
accélérer/améliorer le traitement

q Deux stratégies

v Réduction de dimension (attributs)
• Élimination des attributs non pertinents et réduction du 

bruit 
• Réduction du temps et de l’espace requis pour l’analyse
• Facilitation de la visualisation

v Réduction des données (objets)
• Choisir une représentation compressée des données



Réduction de dimension

q Analyse en composantes principales (PCA)

q Factorisation par matrices non-négatives (NMF)

q Manifold

q Sélection d’attributs : ne conserver que les attributs les plus 
pertinents



Réduction de dimension par sélection d’attributs
(Module sklearn.feature_selection : model.fit_transform())

q Statistique univariée : attributs classés en fonction de la 
significativité statistique de leur relation avec l’attribut cible

    Exemple pour la classification : analyse de la variance ANOVA

v Attribut considéré individuellement (SelectKBest, 
SelectPercentile)

q Sélection par modèle : Utiliser des modèles supervisés qui 
évaluent l’importance des attributs 
(feature_importances)(Exemple: arbres de décision et dérivés, 
modèles linéaires)

     (SelectFromModel)

q Sélection itérative par modèle : utilisation de plusieurs 
modèles de façon itérative, en affinant (ajout/retrait) au fur et à 
mesure l’ensemble des attributs jusqu’à un critère d’arrêt

    (RFE ‘RecursiveFeatureElimination’)



Réduction des données

q Réduction par modèle (supervisée) : apprendre un modèle à partir de 
données, conserver les paramètres du modèle, et supprimer les 
données
    Exemple : régression linéaire, régression multiple

q Réduction sans modèle (non-supervisé) : 

v Avec histogramme : ne conserver que les moyennes ou sommes 
des valeurs dans chaque intervalle

v Avec clustering : ne conserver que la représentation des clusters 
Exemple : centre et rayon, ou dendrogramme pour clustering 
hiérarchique

v Avec échantillonnage : ne conserver qu’un échantillon des objets

q Compression des données sans perte (séquence, audio, vidéo)



Type d’échantillonnage

q Aléatoire

q Avec remise : un objet peut être tiré plusieurs fois

q Sans remise : un objet est tiré une seule fois

q Stratifié : partitionner les données et échantillonner dans 
chaque partie.

Données Échantillonnage aléatoire Échantillonnage stratifié



Prétraitement

q Auscultation (qualité des données)

q Nettoyage

q Intégration

q Réduction

q Transformation

q Discrétisation/binarisation



Transformation des données
(Module sklearn.preprocessing)

q Transformation : appliquer une fonction qui transforme 
l’ensemble des valeurs d’un attribut en un nouvel ensemble de 
valeurs 

q Fonctions:

v Transformation non linéaire: appliquer des fonctions 
mathématiques telles que:

•  log, exp : aident à ajuster les échelles relatives
•  sin, cos : utiles pour les données à motifs 

périodiques

v Normalisation: ramener les valeurs d’un attribut à un 
intervalle spécifié

v Construction d’attributs additionnels : à partir des 
attributs existants (Exemple : polynôme)



Normalisation des données
(Module sklearn.preprocessing : model.fit_transform())
q Normalisation: : ramener les valeurs d’un attribut à un 

intervalle spécifié

v Normalisation Min-max : vers [new_minA, new_maxA]
(MinMaxScaler)

Exemple: Pour des valeurs variant de 500 à 3000 normalisées vers
l’intervalle [0, 1], la valeur 650 devient:

v Normalisation par Z-score (μ: moyenne, σ: écart-type):
(StandardScaler)

Exemple: Si μ = 2000 et σ = 700,  la valeur 650 devient:
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Construction d’attributs additionnels
(Module sklearn.preprocessing)

q Ajout de produits d’attributs ou attributs polynomiaux pour 
enrichir la représentation.

v Ajout de produits d’attributs : utile pour représenter des
    interactions entre les attributs

(np.hstack([X, Y, X*Y]))

v  Ajout d’attributs polynomiaux : utile pour les modèles 
linéaires de régression è régression polynomiale 
(PolynomialFeatures)



Prétraitement

q Auscultation (qualité des données)

q Nettoyage

q Intégration

q Réduction

q Transformation

q Discrétisation/binarisation



Discrétisation/binarisation
(Module sklearn.preprocessing)

q Discrétisation: attribut à valeurs continues è attribut à k valeurs
catégorielles (KBinsDiscretizer)

v Diviser l’ensemble des valeurs continues en k intervalles, puis
remplacer les valeurs par les identifiants des intervalles

q Binarisation: attribut à k valeurs catégorielles è k attributs
binaires (OneHotEncoder, ou pandas.getdummies)

v Supprimer l’attribut initial et remplacer par k attributs binaires, 
un pour chaque valeur initiale



Discretisation/binarisation
(Module sklearn.preprocessing)

q pandas.getdummies()

q OneHotEncoder

In [25]:

In [26]:

In [27]:

OneHotEncoder and ColumnTransformer: Categorical Variables with scikit-
learn

In [28]:

In [29]:

Integer Feature Categorical Feature

0 0 socks

1 1 fox

2 2 socks

3 1 box

Integer Feature Categorical Feature_box Categorical Feature_fox Categorical Feature_socks

0 0 0 0 1

1 1 0 1 0

2 2 0 0 1

3 1 1 0 0

Integer
Feature_0

Integer
Feature_1

Integer
Feature_2

Categorical
Feature_box

Categorical
Feature_fox

Categorical
Feature_socks

0 1 0 0 0 0 1

1 0 1 0 0 1 0

2 0 0 1 0 0 1

3 0 1 0 1 0 0

[[1. 0. 0. 0. 0. 1.]
 [0. 1. 0. 0. 1. 0.]
 [0. 0. 1. 0. 0. 1.]
 [0. 1. 0. 1. 0. 0.]]

['x0_0' 'x0_1' 'x0_2' 'x1_box' 'x1_fox' 'x1_socks']

# create a DataFrame with an integer feature and a categorical string feature
demo_df = pd.DataFrame({'Integer Feature': [0, 1, 2, 1],

'Categorical Feature': ['socks', 'fox', 'socks', 'box']})
display(demo_df)

display(pd.get_dummies(demo_df))

demo_df['Integer Feature'] = demo_df['Integer Feature'].astype(str)
display(pd.get_dummies(demo_df, columns=['Integer Feature', 'Categorical Feature']))

from sklearn.preprocessing import OneHotEncoder
# Setting sparse=False means OneHotEncode will return a numpy array, not a sparse matrix
ohe = OneHotEncoder(sparse=False)
print(ohe.fit_transform(demo_df))

print(ohe.get_feature_names())
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Discretisation/binarisation
(Module sklearn.preprocessing)

In [43]:

In [44]:

In [45]:

In [46]:

bin edges: 
 [array([-2.967, -2.378, -1.789, -1.2  , -0.612, -0.023,  0.566,  1.155,
        1.744,  2.333,  2.921])]

Out[44]: <120x10 sparse matrix of type '<class 'numpy.float64'>'
with 120 stored elements in Compressed Sparse Row format>

[[-0.753]
 [ 2.704]
 [ 1.392]
 [ 0.592]
 [-2.064]
 [-2.064]
 [-2.651]
 [ 2.197]
 [ 0.607]
 [ 1.248]]

Out[45]: array([[0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
       [0., 0., 0., 0., 0., 0., 0., 1., 0., 0.],
       [0., 0., 0., 0., 0., 0., 1., 0., 0., 0.],
       [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],
       [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0., 1., 0.],
       [0., 0., 0., 0., 0., 0., 1., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 1., 0., 0.]])

kb = KBinsDiscretizer(n_bins=10, strategy='uniform')
kb.fit(X)
print("bin edges: \n", kb.bin_edges_)

X_binned = kb.transform(X)
X_binned

print(X[:10])
X_binned.toarray()[:10]

kb = KBinsDiscretizer(n_bins=10, strategy='uniform', encode='onehot-dense')
kb.fit(X)
X_binned = kb.transform(X)
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In [39]:

Convenient ColumnTransformer creation with make_columntransformer

In [40]:

Binning, Discretization, Linear Models, and Trees

In [41]:

In [42]:

Out[39]: OneHotEncoder(categorical_features=None, categories=None,
       dtype=<class 'numpy.float64'>, handle_unknown='error',
       n_values=None, sparse=False)

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/skle
arn/compose/_column_transformer.py:739: DeprecationWarning: `make_column_transform
er` now expects (transformer, columns) as input tuples instead of (columns, transf
ormer). This has been introduced in v0.20.1. `make_column_transformer` will stop a
ccepting the deprecated (columns, transformer) order in v0.22.
  warnings.warn(message, DeprecationWarning)

Out[41]: <matplotlib.legend.Legend at 0x125380438>

ct.named_transformers_.onehot

from sklearn.compose import make_column_transformer
ct = make_column_transformer(
    (['age', 'hours-per-week'], StandardScaler()),
    (['workclass', 'education', 'gender', 'occupation'], OneHotEncoder(sparse=False)))

from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor

X, y = mglearn.datasets.make_wave(n_samples=120)
line = np.linspace(-3, 3, 1000, endpoint=False).reshape(-1, 1)

reg = DecisionTreeRegressor(min_samples_leaf=3).fit(X, y)
plt.plot(line, reg.predict(line), label="decision tree")

reg = LinearRegression().fit(X, y)
plt.plot(line, reg.predict(line), label="linear regression")

plt.plot(X[:, 0], y, 'o', c='k')
plt.ylabel("Regression output")
plt.xlabel("Input feature")
plt.legend(loc="best")

from sklearn.preprocessing import KBinsDiscretizer
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In [47]:

Interactions and Polynomials

In [48]:

Out[47]: Text(0.5, 0, 'Input feature')

(120, 11)

line_binned = kb.transform(line)

reg = LinearRegression().fit(X_binned, y)
plt.plot(line, reg.predict(line_binned), label='linear regression binned')

reg = DecisionTreeRegressor(min_samples_split=3).fit(X_binned, y)
plt.plot(line, reg.predict(line_binned), label='decision tree binned')
plt.plot(X[:, 0], y, 'o', c='k')
plt.vlines(kb.bin_edges_[0], -3, 3, linewidth=1, alpha=.2)
plt.legend(loc="best")
plt.ylabel("Regression output")
plt.xlabel("Input feature")

X_combined = np.hstack([X, X_binned])
print(X_combined.shape)
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X initial

X discrétisé et binarisé



Discretisation/binarisation
(Module sklearn.preprocessing)

In [49]:

In [50]:

Out[49]: [<matplotlib.lines.Line2D at 0x124fa2240>]

(120, 20)

reg = LinearRegression().fit(X_combined, y)

line_combined = np.hstack([line, line_binned])
plt.plot(line, reg.predict(line_combined), label='linear regression combined')

plt.vlines(kb.bin_edges_[0], -3, 3, linewidth=1, alpha=.2)
plt.legend(loc="best")
plt.ylabel("Regression output")
plt.xlabel("Input feature")
plt.plot(X[:, 0], y, 'o', c='k')

X_product = np.hstack([X_binned, X * X_binned])
print(X_product.shape)
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In [55]:

In [56]:

In [57]:

Polynomial feature names:
['x0', 'x0^2', 'x0^3', 'x0^4', 'x0^5', 'x0^6', 'x0^7', 'x0^8', 'x0^9', 'x0^10']

Out[56]: <matplotlib.legend.Legend at 0x126362518>

Out[57]: <matplotlib.legend.Legend at 0x1263797f0>

print("Polynomial feature names:\n{}".format(poly.get_feature_names()))

reg = LinearRegression().fit(X_poly, y)

line_poly = poly.transform(line)
plt.plot(line, reg.predict(line_poly), label='polynomial linear regression')
plt.plot(X[:, 0], y, 'o', c='k')
plt.ylabel("Regression output")
plt.xlabel("Input feature")
plt.legend(loc="best")

from sklearn.svm import SVR

for gamma in [1, 10]:
svr = SVR(gamma=gamma).fit(X, y)
plt.plot(line, svr.predict(line), label='SVR gamma={}'.format(gamma))

plt.plot(X[:, 0], y, 'o', c='k')
plt.ylabel("Regression output")
plt.xlabel("Input feature")
plt.legend(loc="best")
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In [51]:

In [52]:

In [53]:

In [54]:

Out[51]: <matplotlib.legend.Legend at 0x1254b2d68>

X_poly.shape: (120, 10)

Entries of X:
[[-0.753]
 [ 2.704]
 [ 1.392]
 [ 0.592]
 [-2.064]]
Entries of X_poly:
[[   -0.753     0.567    -0.427     0.321    -0.242     0.182    -0.137
      0.103    -0.078     0.058]
 [    2.704     7.313    19.777    53.482   144.632   391.125  1057.714
   2860.36   7735.232 20918.278]
 [    1.392     1.938     2.697     3.754     5.226     7.274    10.125
     14.094    19.618    27.307]
 [    0.592     0.35      0.207     0.123     0.073     0.043     0.025
      0.015     0.009     0.005]
 [   -2.064     4.26     -8.791    18.144   -37.448    77.289  -159.516
    329.222  -679.478  1402.367]]

reg = LinearRegression().fit(X_product, y)

line_product = np.hstack([line_binned, line * line_binned])
plt.plot(line, reg.predict(line_product), label='linear regression product')

plt.vlines(kb.bin_edges_[0], -3, 3, linewidth=1, alpha=.2)

plt.plot(X[:, 0], y, 'o', c='k')
plt.ylabel("Regression output")
plt.xlabel("Input feature")
plt.legend(loc="best")

from sklearn.preprocessing import PolynomialFeatures

# include polynomials up to x ** 10:
# the default "include_bias=True" adds a feature that's constantly 1
poly = PolynomialFeatures(degree=10, include_bias=False)
poly.fit(X)
X_poly = poly.transform(X)

print("X_poly.shape: {}".format(X_poly.shape))

print("Entries of X:\n{}".format(X[:5]))
print("Entries of X_poly:\n{}".format(X_poly[:5]))
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X initial + X discrétisé et binarisé

X initial * X discrétisé et binarisé

Polynômes de X



Discretisation/binarisation
(Module sklearn.preprocessing)

q ColumnTransformer, make_columntransformer

Pour définir les transformations à appliquer à différents 
ensembles d’attributs
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