
UNIVERSITÉ DE SHERBROOKE
DÉPARTEMENT D’INFORMATIQUE

IFT 339
Laboratoire#1 : Écriture de classes en C++

Hiver 2026

Le but de ce laboratoire est de pratiquer les classes, l’héritage, l’utilisation des pointeurs, et aussi
d’apprendre à lire et compléter le code écrit par quelqu’un d’autre. Nous avons vu en cours l’exemple
de conception d’une application permettant de créer un ensemble de figures géométriques dans un
plan et de les déplacer.

Le code de base de l’application vous est fourni. Les classes point, figure et triangle vous
sont entièrement fournies. Vous devez compléter les classes cercle, polygone, et plan, et écrire
entièrement la classe rectangle afin de compléter l’application.

Ce devoir est à faire en équipe de deux. Il devra être complété avant le vendredi 30
janvier 2026 à 23h59. Vous devez remettre, sur turnin.dinf.usherbrooke.ca, les fichiers
générés au cours de ce laboratoire.

Description de la tâche à réaliser
L’application comporte sept (7) types : Point, Figure, Cercle, Polygone, Triangle, Rectangle,

et Plan. Tous ces types comportent au moins les opérateurs suivants permettant de déplacer les
objets et les afficher :

— translater : Point → ∅ : permet de déplacer l’objet par translation suivant un vecteur
représenté par un Point donné en paramètre d’entrée.

— tournerOrigine : réel → ∅ : permet de déplacer l’objet par rotation autour de l’origine
du plan suivant un angle donné en paramètre d’entrée.

— tourner : Point × réel → ∅ : permet de déplacer l’objet par rotation autour d’un centre
suivant un angle. Le centre et l’angle de la rotation sont donnée en paramètres d’entrée.

— afficher : ∅ → ∅ : permet d’afficher la représentation de l’objet.
Les types correspondant à des figures géométriques comportent également les opérateurs sui-

vants permettant de calculer la circonférence et l’aire des objets :
— calculerCirconference : ∅ → réel : permet de calculer la circonférence de l’objet. Dans

le cas du Plan, il s’agit de calculer la somme des circonférences des figures du plan.
— calculerAire : ∅ → réel : permet de calculer l’aire de l’objet. Dans le cas du Plan, il

s’agit de calculer la somme des aires des figures du plan.

1



Le code comporte les fichiers suivants :
— point.h et point.cpp : spécifications et implémentations des opérations du type Point

(fournis complètement)
— figure.h : spécifications et implémentations des opérations du type Figure (fourni complè-

tement)
— cercle.h : spécifications du type Cercle (fourni complètement)
— cercle.cpp : implémentations des opérations du type Cercle (à compléter)
— polygone.h : spécifications du type Polygone (fourni complètement)
— polygone.cpp : implémentations des opérations du type Polygone (à compléter)
— triangle.h et triangle.cpp : spécifications et implémentations des opérations du type

Triangle (fournis complètement)
— rectangle.h et rectangle.cpp : spécifications et implémentations des opérations du type

Rectangle (à écrire entièrement)
— plan.h : spécifications du type Plan (fourni complètement)
— plan.cpp : implémentations des opérations du type Plan (à compléter)
Les opérateurs des classes Cercle, Polygone et Plan à coder sont indiqués par le commentaire

/*... a completer ...*/ dans les fichiers cercle.cpp, polygone.cpp et plan.cpp. Voir les spé-
cifications des opérateurs dans les fichiers “headers” .h correspondant. Les fichiers rectangle.h
et rectangle.cpp sont à écrire entièrement. La classe Rectangle doît comporter au moins le
constructeur spécifié ci-après : Rectangle : Point × Point × Point × Point → ∅, permet-
tant de construire un nouvel objet Rectangle à partir de ses quatre sommets donnés en paramètres
d’entrée.

Inspirez-vous des opérateurs et classes déjà codés pour faire du code cohérent avec ce qui existe
déjà. Vous devriez adopter un plan systématique de codage et de test. Vous devriez d’abord tout
concevoir sur papier. Puis, codez les fonctions une par une dans un ordre qui vous permet de les
tester de façon aussi indépendante que possible. Un exemple de fichier de test main.cpp est fourni
avec le code de départ. Une fois votre programme complété, vous devez vous assurer qu’il compile
et fonctionne bien sous Linux en le testant sur n’importe quelle machine Linux du Département
d’informatique. Les commandes pour compiler et exécuter le programme dans un terminal sous
linux sont fournies dans le script compilation_et_execution.sh. N’oubliez de rajouter dans la
ligne de commande le fichier rectangle.cpp lorsque vous l’aurez écrit.

Remise du travail
Pour soumettre votre travail, connectez-vous, dans un fureteur, au serveur http://turnin.

dinf.usherbrooke.ca en utilisant votre CIP, puis choisissez le cours IFT339 et le projet TP1.
Chargez vos fichiers cercle.cpp, polygone.cpp, plan.cpp, rectangle.h et rectangle.cpp et
soumettez-les. Indiquez bien les noms des deux membres de l’équipe, le cas échéant, en commentaire
dans chaque fichier. Ne faites qu’une seule soumission par équipe. Ne remettez pas d’autre fichier,
ni d’exécutable. Vos fichiers de code seront intégrés à un programme de test contenant déjà les
autres fichiers du programme. Vous n’avez donc pas à re-soumettre ces derniers.

2

http://turnin.dinf.usherbrooke.ca
http://turnin.dinf.usherbrooke.ca


Barême
— 25 points pour soumission réussie d’un programme qui compile sans erreur
— 10 points pour respect des normes de programmation (se référer au document sur les normes

de programmation sur le site web du cours)
— 40 points pour le respect de la conception et des instructions fournies (spécifications des

opérateurs et instructions de remise)
— 25 points la complétion correcte du code (5 points pour chacun de cercle.cpp, polygone.cpp,

plan.cpp, rectangle.h et rectangle.cpp)

3


