UNIVERSITE DE SHERBROOKE
DEPARTEMENT D’INFORMATIQUE

IFT 339
Laboratoire#2 : Types vector et deque

Le but de ce laboratoire est de pratiquer les classes, 'allocation dynamique, les pointeurs, ainsi que
la lecture et la complétion d’un code écrit par quelqu’un d’autre. Vous devez compléter deux classes
vector et deque a peu pres équivalente fonctionnellement a celles de la bibliotheque standard SL
(sans inclure toutes les fonctions des classes).

Ce devoir est a faire en équipe de deux obligatoirement. Il devra étre complété avant le
vendredi 13 février 2026 a 23h59. Vous devez remettre, sur turnin.dinf .usherbrooke.ca,
les fichiers générés au cours de ce laboratoire.

Description de la tdche a réaliser
Classe vector

T

35‘19 32 14’11 21‘12‘5 ‘ | |

T2

1
— / 3519 32‘14 11‘21 12 | 5

| —

On vous fournit le code de base d’une classe générique vector séparé dans deux fichiers. Le
premier, vector.h, contient les définitions des fonctions déja codées, et appelle I'inclusion de I'autre,
vector2.h, qui contient les entétes des fonctions que vous devez coder. Le premier fichier appelle
automatiquement le second, vous n’avez donc qu’'un include de vector.h a faire dans un programme
principal main.cpp qui utilise cette classe (vous devez écrire votre propre programme main.cpp
pour tester votre code). Notez qu’avec des classes génériques, il n’y a pas de fichier .cpp et tout
le code est dans le fichier .h. La technique de représentation choisie est par pointeurs vers des
éléments d’un tableau contigu alloué dynamiquement (c’est la représentation usuelle de la SL). La

1

classe vector a trois attributs, DEBUT, FIN__DIM et FIN_ CAP, qui sont des pointeurs. DEBUT
pointe au début du tableau alloué dynamiquement. FIN__DIM pointe a la fin du dernier élément,
et FIN__CAP pointe a la fin du tableau alloué dynamiquement. La figure ci-dessus illustre bien la
différence entre la fin du dernier élément et la fin du tableau alloué dynamiquement.

T1 est un cas général : on dispose d’'une capacité totale de 12 et la dimension est de 8, et la
réserve est de 4. T2 est un cas particulier ou il n’y a pas de réserve : FIN_DIM et FIN_CAP
pointent a la méme adresse. T3 est un vector vide : son size() est a 0, mais il a une réserve de 8. T4
est un vector vide sans réserve : c’est le résultat du constructeur sans parametre ou du clear ().

Les fonctions de la classe vector que vous devez coder sont les suivantes. Assurez-vous de bien
traiter et tester TOUS les cas possibles.

— constructeur avec paramétre

— reserve augmente au besoin la capacité du vector mais ne la diminue pas. En cas d’augmen-

tation de capacité, la fonction reserve alloue le nouvel espace et fait les copies. En cas de
diminution, la fonction reserve ne fait rien. Notez 'utilisation de la fonction reserve dans
les fonctions resize et dans push_back. Si la capacité du vector est atteinte, la fonction
push_back fait appel a reserve pour que la capacité devienne le double de la dimension.

— back x 2 retourne une référence au dernier élément.

— front x 2 retourne une référence au premier élément.

— operator[] x 2 retourne une référence a un élément.

Classe deque

D

G >{E|?|§A3 A16| 32| 14| 11] 21|

FRONT
BACK

Vide Nouveau
DEBUT_CAP > DEBFTAP
FIN_CAP FIN

i F

B, B,

On vous fournit le code de base d’une classe générique deque, séparé dans deux fichiers. Le
premier, deque.h, contient les définitions des fonctions déja codées, et appelle I'inclusion de I'autre,
deque2.h, qui contient les entétes des fonctions que vous devez coder. Le deque possede toutes les
fonctionnalités du vector, et permet en plus d’ajouter des éléments au début. Il possede, comme
le vector, une fonction push_back qui ajoute un élément a la fin, mais il possede aussi la fonction
push_front qui en ajoute un au début. Ces deux fonctions doivent s’exécuter en temps O(1)
amorti. Comme pour le vector, la technique de représentation choisie est par pointeurs vers des
éléments d’un tableau contigu alloué dynamiquement, avec une zone commune pour les push_back
et push_front (cette représentation est différente de celle la SL qui prévoit deux zones de mémoire

2

de réserve différentes pour effectuer les push_front et les push_back). La fonction push_front
ajoute un élément avant le premier élément. Si le premier élément est au début du tableau alloué,
Pajout se fait juste avant la fin du tableau alloué. La fonction push_back ajoute un élément apres
le dernier élément. Si le dernier élément est juste avant la fin du tableau alloué, I'ajout se fait au
début du tableau alloué.

La classe deque a quatre attributs : DEBUT__CAP, FIN_CAP, FRONT et BACK. Ce sont des
pointeurs. DEBUT __CAP pointe au début du tableau alloué dynamiquement. FIN__CAP pointe a
la fin du tableau alloué dynamiquement. FRONT pointe au début du premier élément du deque.
BACK pointe au début du dernier élément du deque. La figure ci-dessus illustre bien la représen-
tation. C’est ce que 'on appelle une implantation circulaire.

D est un cas général : on dispose d’une capacité totale de 12, la dimension est de 9, et la réserve
est de 3. Le premier élément du deque est 16, et le dernier 3. La configuration actuelle du deque D
pourrait étre le résultat de push_back successifs des éléments 12, 5, —8 et 3, suivis de push_front
successifs des éléments de valeurs 21, 11, 14, 32 et 16. Vide est un deque vide : son size() est a 0,
mais il a une réserve de 7. Il pourrait étre le résultat d'un resize(0), ou d’'un pop_front ou un
pop_back sur un deque de dimension 1. Nouveau est un deque vide sans réserve : c’est le résultat
du constructeur sans parametre ou du clear().

Inspirez-vous des opérateurs et classes déja codés pour faire du code cohérent avec ce qui
existe déja. Vous devriez adopter un plan systématique de codage et de test. Vous devriez d’abord
tout concevoir sur papier. Puis, codez les fonctions une par une dans un ordre qui vous permet
de les tester de fagon aussi indépendante que possible. Une fois votre programme complété, vous
devez vous assurer qu’il compile et fonctionne bien sous Linux en le testant sur les machines du
Département d’informatique..

Remise du travail

Pour soumettre votre travail, connectez-vous, dans un fureteur, au serveur http://turnin.
dinf .usherbrooke.ca en utilisant votre CIP, puis choisissez le cours IFT339 et le projet TP2.
Chargez vos fichiers vector2.h et deque2.h et soumettez-les. Indiquez bien les noms des deux
membres de I’équipe en commentaire dans ces fichiers. Ne faites qu’une seule soumission par équipe.
Ne remettez pas d’autre fichier, ni d’exécutable. Vos fichiers de code seront intégrés a un programme
de test contenant déja les autres fichiers du programme. Vous n’avez donc pas a re-soumettre ces
derniers.

http://turnin.dinf.usherbrooke.ca
http://turnin.dinf.usherbrooke.ca

Baréme

— 25 points pour soumission réussie d’un programme qui compile sans erreur par une équipe
de deux

— 10 points pour respect des normes de programmation (se référer au document sur les normes
de programmation sur le site web du cours)

— 40 points pour le respect de la conception et des instructions fournies (spécifications des
opérateurs et instructions de remise)

— 25 points la complétion correcte du code (5 points pour vector2.h et 20 points pour
deque2.)

